Structure of the human CR1 gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele
نویسندگان
چکیده
Structural and quantitative polymorphisms have been described in human CR1. In the former, the S allotype is larger than the F allotype by 40-50 kD, the size of a long homologous repeat (LHR). In the latter, homozygotes for a 7.4-kb Hind III fragment express fourfold more CR1 per erythrocyte than do homozygotes for the allelic 6.9-kb restriction fragment. The basis for these genomic polymorphisms has been determined by restriction mapping the entire S allele and part of the F allele. The S allele is 158 kb and contains 5 LHRs of 20-30 kb, designated -A, -B/A, -B, -C, and -D, respectively, 5' to 3'. Extensive homology was found among the LHRs in their restriction maps, exon organization, and the coding and noncoding sequences. The presence of LHR-B/A in the S allele but not in the F allele accounts for the longer transcripts and polypeptide associated with the former allotype. At least 42 exons are present in the S allele, with distinct exons for the leader sequence, the transmembrane and cytoplasmic regions and most of the SCRs comprising the extracellular portion of CR1. Consistent with the mapping of the ligand binding site to the first two SCRs in each LHR, the second SCRs in LHR-A, -B/A, -B, and -C are encoded by two exons, reflecting a specialized function for this unit. The allelic 7.4/6.9-kb Hind III fragments extend from the 3' region of LHR-C to LHR-D. The 6.9-kb restriction fragment is the result of a new Hind III site generated by a single base change in the intron between the exons encoding the second SCR of LHR-D. A second cluster of genomic clones has been identified by hybridization to CR1 probes. Although they contain regions of hybridization to the cDNA and genomic probes derived from CR1, these cannot be overlapped with the structural gene owing to their distinct restriction maps. Three genomic polymorphisms previously identified by CR1 cDNA probes map to this region. These additional clones may represent part of a duplicated allele located nearby within the CR1 locus.
منابع مشابه
Quantitative variations of the C3b/C4b receptor (CR1) in human erythrocytes are controlled by genes within the regulator of complement activation (RCA) gene cluster
The genetic relationships of quantitative and structural variations of the C3b/C4b receptor (CR1) in human erythrocytes have been analyzed in informative families. Our results demonstrate the existence of multiple discrete quantitative variations of CR1 controlled by a locus, C3bRQ, closely linked to the CR1 structural locus, C3bR. Since the amounts of CR1 produced by each C3bR allele are shown...
متن کاملCombination of Myelin Basic Protein Gene Polymorphisms with HLA-DRB1*1501 in Iranian Patients with Multiple Sclerosis
Background: Multiple sclerosis (MS), as a multifactorial autoimmune disease with complex genetic basis, causes demyelination in the central nervous system via cytokine responses to myelin antigens. Myelin basic protein (MBP) is the main protein component of the myelin sheath. HLA-DRB (human leukocyte antigen-DR beta) alleles, particularly HLA-DRB1*1501, may be of significance in the pathogenesi...
متن کاملAnalysis of multiple restriction fragment length polymorphisms of the gene for the human complement receptor type I. Duplication of genomic sequences occurs in association with a high molecular mass receptor allotype
Human CR1 exhibits an unusual form of polymorphism in which allotypic variants differ in the molecular weight of their respective polypeptide chains. To address mechanisms involved in the generation of the CR1 allotypes, DNA from individuals having the F allotype (250,000 Mr), the S allotype (290,000 Mr), and the F' allotype (210,000 Mr) was digested by restriction enzymes, and Southern blots w...
متن کاملErythrocyte complement receptor 1 (CR1) expression level is not associated with polymorphisms in the promoter or 3' untranslated regions of the CR1 gene.
Complement receptor 1 (CR1) expression level on erythrocytes is genetically determined and is associated with high (H) and low (L) expression alleles identified by a HindIII restriction fragment-length polymorphism (RFLP) in intron 27 of the CR1 gene. The L allele confers protection against severe malaria in Papua New Guinea, probably because erythrocytes with low CR1 expression, are less able ...
متن کاملGenetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements
Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 169 شماره
صفحات -
تاریخ انتشار 1989